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Abstract—Saratoga is a protocol for fast file transfers across

dedicated links in private networks, using small amounts

of feedback for loss recovery. It is in use to download

large amounts of imaging data from remote-sensing satellites,
where the link environment is highly asymmetric and up-

links are constrained. However, Saratoga lacks a rate-control

mechanism to allow fair share with co-existing flows for si-

multaneous competing transfers, or for across the congested

Internet where it must coexist fairly with TCP. TFRC, a self-
and TCP-Friendly Rate Control mechanism, can be adopted

for Saratoga and leverage its existing protocol information.

Use of TFRC normally requires significant changes in pro-

tocol operation, including additional data in feedback. We

design a sender-based TFRC for Saratoga, needing only sim-
ple modifications within the sender and using only existing

feedback information. This sender-based TFRC is shown to

share the bottleneck-bandwidth fairly under various network

conditions, allowing Saratoga to be adapted for shared links

or for the congested Internet, while still supporting the asym-
metric environments that Saratoga was originally developed

for.
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1. INTRODUCTION

Wood et al. [1] describe Saratoga, a UDP-based protocol

that sends data at a rate independent of the rate of feed-

back, and performs loss recovery based on periodic feed-

back. Saratoga’s loss recovery mechanism is less chatty

than others’ loss recovery mechanisms to support constrained
return-channels. Saratoga is suitable for the use in satellite-

environments where links are highly asymmetric having brief

periods of connectivity, and where loss occurs due to channel-

related errors, rather than to congestion. Uplinks are con-

strained in such environments.

Currently, Saratoga is being used to download data from In-

ternet Protocol (IP)-enabled Disaster Monitoring Constella-

tion (DMC) satellites constructed by Surrey Satellite Tech-

nology. The five DMC satellites currently operational in low
Earth orbit, of the seven that have been launched provide

remote-sensing images to support disaster relief. Remote-

sensing images provided by these DMC satellites are used

for the observation of the Earth to monitor flood, wildfires,

volcanoes and cryosphere events, as well as agricultural and
population monitoring. The usefulness of DMC satellites for

the observation of the Earth has been evaluated in [2].

Saratoga has also been used to demonstrate delay-tolerant

networking concepts from orbit, with the first tests of the
Bundle Protocol from space for the Interplanetary Internet

to deliver images as bundles [3]. This is an optional capa-

bility provided by Saratoga, and not in regular operational

use. Saratoga is also currently being evaluated for use in pri-
vate radio astronomy networks, where high-speed sensor data

flows are a base requirement [4].

Saratoga could be used to download data simultaneously

from multiple IP-enabled devices onboard satellites [5],
rather than using the scheduled one-file-only-after-another

model that currently avoids competition, or could be used for

transfers of data from remote-sensing systems directly to end
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users through the public Internet [6]. Such data transfers will

be across links which are shared by co-existing flows or with

other protocols, predominantly Transmission Control Proto-
col (TCP), in the Internet.

TCP is the most widely-used reliable and rate-controlled

transport protocol when multiple competing flows share com-

mon links. TCP achieves reliability and rate-control based
on frequent acknowledgments that can be a limiting factor

for data transfers when the forward/back-path-asymmetry ex-

ceeds 50:1 [7]. That, and TCP’s assumptions about all packet

loss being caused by congestion in link buffers and queues,

make TCP unsuitable for the satellite environment we have
described, as a single TCP flow will not be able to fully uti-

lize the available capacity of satellite links.

An optional TCP-friendly rate-control mechanism is desir-

able in Saratoga to permit fair allocation of shared paths to
TCP and other traffic, and to enable Saratoga to be used in

the public Internet, rather than only in the private networks

for which Saratoga was originally designed and developed.

When we refer to rate control here, we mean a closed feed-

back loop leading to managed flow control, rather than con-
trolling to a fixed rate in an open loop.

We aim to design a TCP-friendly rate-control mechanism for

Saratoga. Widmer et al. [8] provide an overview of known

TCP-friendly rate-control mechanisms. Given Saratoga’s
data sending mechanism, we prefer the rate-based approach

to the window-based one for better integration and to keep

the functionality of the Saratoga sender simple. More im-

portantly, considering the current use of Saratoga in private
space links where losses can be bursty and are due to channel-

related errors, not to congestion, the conservative reaction

of rate-based approaches to packet loss will provide better

throughput performance than the more aggressive reaction of

window-based approaches. Among the rate-based protocols
proposed in the literature, TCP Friendly Rate Control (TFRC)

[9, 10] suits Saratoga in terms of low needed feedback rate.

TFRC, which is specified by the Internet Engineering Task

Force as a proposed standard [9], has been shown to per-

form very well for a variety of available link capacities and
number of flows [10]. Therefore, we aim to use a TFRC-like

rate-control mechanism with minimal changes to the existing

Saratoga protocol.

In TFRC, the sender controls the rate of sending data using
a model imitating the long-run behavior of TCP, and requires

two parameters from the receiver to do this – a measure of

the loss and the receiver’s throughput. It is receiver-based

because the parameters are computed at the receiver by keep-

ing a history of receive-times of packets, and are sent to the
sender through periodic feedback. Although the computa-

tions could be done at the sender in the sender-based vari-

ants discussed in [9], the receiver still needs to send feed-

back containing the receiver’s throughput, loss-related infor-

mation and other components required to compute the mea-

sure of loss. Moreover, the Round Trip Time (RTT), which

is required at the receiver in the above-mentioned variants of

TFRC, has to be either sent from the sender to the receiver or
sampled at the receiver. However, sampling the RTT at the

receiver has ill-effects on the performance of TFRC suggest-

ing to send the RTT from the sender to the receiver [11]. The

sending of the RTT from the sender, and the above-mentioned

feedback is not supported in Saratoga protocol.

A sender-based TFRC has been proposed in [12], where the

measure of loss is computed at the sender by keeping a his-

tory of send-times of packets. To compensate the error due

to the use of send-times instead of receive-times, the measure
of loss is corrected by the ratio of the receiver’s throughput to

the sending rate. Like the receiver in Saratoga, the receiver

in this sender-based version of TFRC sends the loss report

to the sender through feedback. However, feedback packets,

which contain bit-fields indicating the fate (lost or received)
of packets, differ from feedback packets in Saratoga where

only the offsets of lost packets are sent. Moreover, unlike the

receiver in Saratoga, the receiver in the sender-based version

of TFRC sends the receiver’s throughput to the sender.

The previous two paragraphs suggest that adopting existing

TFRC mechanisms would require significant modifications

to the Saratoga protocol. Moreover, sending additional data,

required for existing TFRC versions, in feedback is undesir-

able in Saratoga when asymmetry and low rates of the return-
channel are present, as acknowledgement congestion on the

return-channel is a concern. Therefore, we design a true

sender-based TFRC-like mechanism that controls the rate us-

ing the existing feedback specified in Saratoga, which antici-
pates the use of TFRC or a similar mechanism [1]. Our mech-

anism resembles the receiver-based TFRC, but computes pa-

rameters at the sender.

Our contributions are:

1. a rate-control mechanism for Saratoga,

2. a sender-based TFRC for Saratoga without significant

changes to the existing protocol, incurring no additional feed-

back, and

3. a major step towards a true sender-based TFRC.

Our results suggest that the sender-based TFRC is self- and

TCP-friendly across both symmetric and asymmetric link en-

vironments. Results also show that the change of the rate in

steady state is smooth, indicating a less aggressive response

to the loss and small throughput reduction when the loss is
not due to the congestion.

Simple modifications to the sender ensure minimal develop-

ment effort, while receivers can still receive data from exist-

ing senders. True sender-based TFRC shifts the processing
and resource requirements to the sender, and therefore, may

increase the suitability of TFRC for some servers receiving

files from many sources.
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The rest of this paper is organized as follows. An overview

of the receiver-based TFRC mechanism is presented in Sec.

2. Sec. 3 presents the sender-based TFRC followed by eval-
uation results in Sec. 4. Sec. 5 highlights conditions for the

effective use of the sender-based TFRC followed by conclud-

ing remarks in Sec. 6.

2. RECEIVER-BASED TFRC

TFRC is a rate-control mechanism with a smoother through-

put than TCP, while sharing the bandwidth fairly with

TCP [9]. Following are the advantages of TFRC over TCP:

• Decreased variation in the instantaneous throughput. Par-

ticularly, TFRC does not cut the throughput to half (fast re-
covery) when a loss is detected.

• Rate-based mechanism is suitable for rate-based transfer

protocols. In Saratoga, the rate of sending packets is deter-

mined from the data rate which can be obtained directly from
the TFRC like mechanism.

• Requires less frequent feedback from the receiver than

what is required in TCP.

The basic underlying principles of TFRC, and functionalities

in TFRC receivers and senders are now given.

a) Basic principle

TFRC uses the following model [9] which is a simplified form

of the model of TCP [13] to compute the data rate (X) as

a function of the packet size (s), the RTT (R), a notion of

loss (p), an approximation of TCP timeout value (tRTO), and

the maximum number of packets acknowledged by a TCP-
acknowledgement (b):

X =
s

R ×
√

2bp/3 + tRTO ×

(

3 ×
√

3bp/8

)

× p × (1 + 32p2)

(1)

The value of p is computed and sent by the receiver to the

sender. For the computation of the value of p, losses separated

by a time period of an RTT or more are recognized as loss

events. The value of p is computed as the reciprocal of the
weighted average of the number of packets sent between the

start of two successive loss events.

b) Receiver functionalities

This TFRC is receiver-based because the receiver computes

the value of p and the throughput to provide feedback to the
sender, as follows:

1. At reception of a data packet, the receiver records the re-

ception time. If a loss of packets is detected, the supposed re-

ception times of lost packets are interpolated using the times

and sequence numbers of packets received right before and
after the loss. These times are used to update a history of

lost/received packets. The value of p is computed from the

history. If the value of p has increased compared to the last

computed value, the receiver’s throughput is computed, and

this information is sent as feedback to the sender.

2. The receiver should send a feedback packet at least every
RTT if data packets have been received since the last feedback

packet was sent. The value of p and the receiver’s throughput

are computed using the history of packets, and are included

in the feedback packet.

c) Sender functionalities

1. The sender starts sending data with an initial rate.

2. The sender tracks the weighted average of the RTT and

an approximation of the TCP-timeout value. When a feed-

back packet is received from the receiver, the sender updates

the weighted average of the RTT, and approximates the TCP-
timeout using the RTT. The value of p and the receiver’s

throughput contained in the feedback packet are used to up-

date the sending rate. If the value of p is zero, the sender

doubles the current rate, which is bounded by twice the re-

ceiver’s throughput at the higher side, and one packet every
RTT at the lower side. Otherwise, the sender computes the

value of X as the sending rate, which is bounded by twice the

receiver’s throughput at the higher side and one packet every

64 seconds at the lower side.

3. If no feedback packet is received for a certain period of
time, the sender cuts down the rate to half.

3. SENDER-BASED TFRC (STFRC) FOR

Saratoga

In this section, we present the challenges in designing the

Sender-based TFRC (STFRC) for Saratoga, our approaches

to meet those challenges, and the algorithms used for the pro-
posed STFRC.

a) Overview of our approach

In STFRC for Saratoga, the receiver is unchanged from

Saratoga. The sender performs all rate-control related func-

tionalities of TFRC. These functionalities include building

the history of packets followed by the computation of the
receiver’s throughput, the loss event rate and the sending

rate. Building the history of packets requires reception-

times and packet-delivery fates. Since the sender can only

learn the loss status of packets when a feedback packet (so-

called STATUS-feedback packet) is received, the updating
of the history and computations are performed at reception

of a STATUS-feedback packet. Reception-times are pre-

dicted from send-times of packets and the RTT. Therefore,

the sender records the send-time of a packet in the history

at the time of sending, and adds a fraction of RTT to the
send-time when the STATUS-feedback packet is received.

Also, the packet-delivery-fates are marked in the history us-

ing the report of loss contained in the STATUS-feedback

packet. After updating the history, the computations are per-

formed and the newly-computed sending rate is used till the
next STATUS-feedback packet is received. Given Saratoga’s

feedback mechanism, implementation of the functionalities

raises some challenges in designing the STFRC for Saratoga.
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We present these challenges, our approaches to meet the chal-

lenges, and the algorithms used for the proposed STFRC in

the following subsections.

b) Challenges to design the STFRC for Saratoga

Building the history of packet delivery requires the reception-

times of packets. Lost and retransmitted (or delayed and re-

transmitted) instances of the same packet must be uniquely

identified in the history for the accurate computation of the

average receiver’s throughput over the last RTT, and for the
computation of the value of p.

These requirements give rise to the following challenges to

design the STFRC for Saratoga:

• Determining the reception-times: As packet reception-

times are neither known to the sender nor sent from the re-

ceiver, the sender has to predict the reception-times as cor-

rectly as possible without incurring a significant overhead.
• Unique identification of packets: In Saratoga, the receiver

sends offsets of data in STATUS-feedback packets to report

lost and received packets. These offsets are not unique or

sequential, due to losses and retransmissions. The same

losses may be reported in multiple STATUS-feedback pack-
ets if multiple requests are received before receiving the lost

packets reported in the first of the STATUS-feedback pack-

ets. Therefore, a mechanism is needed to uniquely identify

packets without incurring too much overhead.

c) Our approaches to meet the challenges

We address the above-mentioned challenges as follows:

I. Prediction of reception-times of packets—An estimation of

the forward-path-delay is obtained by multiplying the RTT
with a Symmetry Ratio, defined as the ratio of the average

forward-path-delay to the average RTT. Since the size of

packets on the forward path is larger than that on the reverse

path, the Symmetry Ratio may not be equal to 0.5 because

of the larger transmission delay and larger probability of de-
veloping congestion at local exit routers (considering equal

delay at intermediate routers). Therefore, it would be bet-

ter to obtain the factor from the long-term knowledge of the

network or using a low-overhead mechanism to estimate the

forward delay periodically at the cost of increased overhead.
Reception-times are obtained by adding the forward delay to

the send-times of packets. The RTT can be measured peri-

odically using timestamps in the STATUS-feedback packet.

(Timestamps are optional in Saratoga.)

II. Unique identification of packets—Unique identification is

required for a history of packet-delivery fates that can be up-

dated by the sender when a STATUS-feedback packet is re-

ceived. Although the STATUS-feedback packet contains a

report up until the packet requesting the STATUS-feedback
packet to be sent, the history may contain send-times of pack-

ets sent after sending the packet carrying the request. This

happens because the sender will continue to record the send-

times of packets that will be sent between the time of send-

ing the packet carrying the request and the time of receiv-

ing the STATUS-feedback packet that was requested. When
the STATUS-feedback packet is received, the sender needs to

move back along the history from the time of receiving the

STATUS-feedback packet to the time of receiving the packet

that sent the request for the STATUS-feedback packet. This

is done to confine the updating only to those packets whose
receive-times and delivery-fates can be determined from this

particular STATUS-feedback packet. Therefore, the history is

updated by determining the receive-times and delivery-fates

of the packets sent during the time period between sending

two successive successfully-answered requests for STATUS-
feedback packets.

To better explain which packets in the history are updated at

reception of a STATUS-feedback packet, we introduce Fig. 1

demonstrating various events that may happen during an on-
going transmission in Saratoga. While the data transmission

is going on, and a request for STATUS-feedback packet is

due, the sender sends a request with the very next packet sent

at time t1. At reception of the packet with the request, the re-

ceiver responds with a STATUS-feedback packet containing
a report of losses of packets received so far. Assuming pack-

ets arrive at the receiver in the sequence they are sent, this

STATUS-feedback packet received at time t1′ will contain

report up until the packet sent at time t1. The sender con-

tinues to send packets and record send-times in the history
after sending the packet at time t1. Thus, when the STATUS-

feedback packet is received, the history will contain packets

up until the packet sent at time t1′. However, the conversion

of send-times to receive-times and marking delivery-fates of
packets are performed for those packets (whose send-times

are in the history) that were sent up until the packet sent at

time t1.

The next request is sent at time t2 and is lost on the way (alter-
natively, the corresponding STATUS-feedback packet might

get lost). We reckon the time (e.g. from t1 to t2 or from t2

to t3) between sending two successive requests as a period

Figure 1. Ladder diagram showing various transmission

events in Saratoga.
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which is significant because various information (presented

later in the section) regarding some packets, sent during the

period, is recorded. At time t3, the sender sends the next
request which is answered successfully by the receiver. At

reception of this STATUS-feedback packet at time t3′, the

sender updates the history of packets that were sent between

time t1 and t3. We call this time period, (t3 − t1), a cycle.

A cycle may consist of one or more periods. Saratoga has an
explicit but optional timestamp field which is used to identify

the cycle.

The identification of packets sent during a cycle is required

for updating the history. Unique identification of packets
sent during a cycle would be possible by storing their offsets

and send-times. But this is inefficient due to the requirement

for large amounts of memory to store offsets and additional

processing to identify packets using the send-times. Ineffi-

ciency increases when the number of packets sent during a
cycle is large due to the high sending rate, and/or the loss of

request/STATUS-feedback packets resulting in a long cycle.

Therefore, we use an alternative method for identification of

packets.

For the identification of packets using the alternative method,

we introduce dummy sequence numbers used only within the

sender. When a packet is sent, the send-time is recorded in

the history, and the packet is assigned a unique dummy se-

quence number which is used to identify the packet in the
history. At reception of a STATUS-feedback packet, the

sender determines the range of dummy sequences of the pack-

ets sent during the cycle ended by this STATUS-feedback

packet. A range determination is required because the his-
tory might contain packets sent in previous and subsequent

cycles. Dummy sequences of lost packets are also determined

from the offsets of lost data reported in the STATUS-feedback

packet, and from the information described below. The range

of dummy sequences, and the dummy sequences of lost pack-
ets are used to identify the packets in the history to convert

their send-times to receive-times by adding the predicted for-

ward delay, and to mark them as lost/received.

For the identification using dummy sequences, we recognize
the following sets of transmissions, shown in Fig. 1, that

might happen during a period:

• Set I of regular transmission: First set of regular transmis-

sion starts with the packet sent after the packet carrying a

request (e.g. sent at time t1), and occurs until the reception of

a STATUS-feedback packet. If the STATUS-feedback packet
does not report any loss, then this set of transmission contin-

ues until sending the next request (e.g. up until the packet

sent at time t2).

• Set of retransmissions: Retransmissions (shown in dark

background in Fig. 1) start after receiving a STATUS-
feedback packet containing reports of losses, and continues

until all lost data are retransmitted. The set of retransmis-

sions contains all the retransmissions that occur in the period.

Retransmissions may not occur if no loss is reported.

• Set II of regular transmission: It starts after the end of re-

transmissions (if occurs), and continues until sending the next
request (e.g. up until the packet sent at time t2).

The following information is recorded for identification pur-

poses:

• Dummy sequences and send-times of the first and the last

packet of each period: These are required to identify the pack-

ets sent during a cycle, and to determine the span of a cycle.
• Offset to dummy sequence mapping for all retransmitted

packets: Since offsets of retransmitted packets are not se-

quential, these are required to find the dummy sequences of

packets lost from retransmitted packets.

• Offsets and dummy sequences of the first packets of each
set of regular transmissions: Since offsets of regular pack-

ets are sequential, dummy sequences of packets that are lost

from regular transmissions can be obtained from offsets of

lost packets using the first packet’s dummy sequence and off-

set, and the packet size.

The information is recorded for each period because a period

is a potential cycle. If two STATUS-feedback packets sent in

response to two successive requests marking a period are re-
ceived, the period is a cycle. If a packet carrying a request or

the corresponding STATUS-feedback packet is lost, the cycle

consists of more than one period. When a STATUS-feedback

packet is received, the sender uses the timestamp in the packet

and the time of the last packet sent in each of the periods to
determine whether the cycle consists of multiple periods or

not, and the information for those periods are merged for the

cycle.

d) Sender algorithms

The steps that are executed by the sender to implement the

approaches mentioned in this section are shown in Algorithm
1 and 2, and are discussed below.

Algorithm 1 Sender’s algorithm when a packet is sent.

1: Detect the transmission set type, and record sequence

numbers, offsets and send-times of packets as discussed

in Sec. 3.
2: if (a request for a STATUS-feedback packet is due) then

3: Record the dummy sequence and the send-time of the

packet to mark the end of a period.

4: end if

5: if (a request was sent with the previous packet) then

6: Record the dummy sequence and the send-time of the

packet to mark the start of a period.

7: end if

8: Store the send-time of the packet in the history.

The steps given in Algorithm 1 are required for unique iden-
tification of packets, and for congestion control. These steps

are in addition to the steps that are executed by a Saratoga

sender without congestion control.
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Algorithm. 2 lists the steps that are executed by a sender

in STFRC for Saratoga when a STATUS-feedback packet is

received.

Algorithm 2 Sender’s algorithm when a STATUS-feedback
packet is received.

1: Update the RTT and the TCP-timeout.
2: Identify the cycle i.e. the dummy sequence number of the

last packet ending the cycle. This might require merging

of multiple periods into a cycle.

3: Using the recorded information specified in Algorithm 1,

offsets of the lost packets reported by the receiver, and
the information from Step 2, find dummy sequences of

the packets lost in the cycle.

4: Update receive-times and delivery-fates (received or lost)

of the packets sent during the cycle.

5: Estimate the receiver’s throughput and compute the value
of p.

6: Compute the sending rate.

7: Prepare the retransmission list from the loss reported.

In Algorithm 2, Step 6 is similar to the computation of the
sending rate by a TFRC sender discussed in Sec. 2, whereas

Step 7 is for the response of a typical Saratoga sender. The

requirement for Step 2 is explained next. As discussed ear-

lier in this section, a cycle consists of multiple periods when

requests or STATUS-feedback packets are lost. This requires
merging of multiple periods into a cycle. The reason for find-

ing the range of dummy sequences of packets sent in a cycle

has been explained in the 5th paragraph of Sec. 3-c(II).

Step 3 is required for two reasons. First, a STATUS-feedback
packet may report losses that have been already reported by

previous STATUS-feedback packets because the STATUS-

feedback packet was sent before the retransmitted packets

have reached the receiver. Therefore, packets lost in the cur-
rent cycle have to be identified. Second, offsets of lost packets

have to be mapped to dummy sequences to update the packet-

delivery-fates in the history. Identification and mapping have

been discussed earlier in this section.

In Step 4, times and delivery-fates of packets are updated in

the history based on the cycle identified in Step 2, and the

dummy sequences of lost packets obtained in Step 3. In Step

5, the receiver’s throughput and the value of p are determined

in a similar way it is done in TFRC [9].

4. PERFORMANCE EVALUATION

We use ns-2 [14] simulations to evaluate the self- and TCP-

friendliness of STFRC for Saratoga.

a) Simulation environment

We evaluate two simulation topologies: one using symmet-
ric wired links around a bottleneck, and another adding an

asymmetric satellite link. The bottleneck environment using

symmetric links is similar to that used in [10] for the eval-

uation of the receiver-based TFRC, and is intended to show

that STFRC performs as well as the receiver-based TFRC, un-

der both the conditions for which Saratoga was designed and
more general use. The addition of an asymmetric link is in-

tended to demonstrate the performance when capacity of the

reverse feedback path is much lower than that of the forward

data path.

R2R1
TCP 1 20ms

Bottleneck link

Sources

STFRC 1

Destinations

TCP n

STFRC n

TCP 1

STFRC 1

TCP n

STFRC n

100Mbps 1~64Mbps

Figure 2. Topology using symmetric wired links.

Fig. 2 shows the topology using symmetric links. An equal

number of TCP SACK and STFRC (in Saratoga) flows, trans-

ferring bulk data, share the bottleneck link. Nodes that con-

tain sources and destinations are connected to routers R1 and

R2, respectively. Queue lengths at routers are scaled ac-
cording to the bottleneck link bandwidth in a similar way as

to [10].

R2R1
20ms

Bottleneck link

TCP n

Ground station

100Mbps

3.84/0.384
/0.0384Mbps

Satellite link

TCP 1

STFRC 1

STFRC n

TCP n

TCP 1

Sources Destinations

100Mbps 1~64Mbps

STFRC 1

STFRC n

}

Figure 3. Topology using an asymmetric satellite links.

Fig. 3, based on Fig. 2, adds an asymmetric satellite link.
However, instead of using individual nodes connected to R1

for each STFRC (in Saratoga) source, one satellite node con-

taining all the STFRC sources is connected to a satellite

ground station through a wireless link with a relatively high

bit error rate of 10−4.

The downlink for the wireless link is simulated at 100Mbps,

approximating what is planned for future DMC satellites. We

use three uplink bandwidths for the wireless link – 3.84Mbps,

0.384Mbps and 0.0384Mps. An uplink of 0.0384Mbps is
planned for deployment in future DMC satellites (where ex-

isting DMC satellites currently use 9600bps or 19200bps up-

links). Unless mentioned explicitly, all results for the asym-
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Table 1. Values of parameters used in the simulation.

Parameter Value

TCP version TCP SACK

TCP maximum window size 10000 pkts

Packet size 1040 bytes

Wired link BW (except bottleneck) 100Mbps
Source/destination-R1 wired link delay

for the symmetric link case

2ms

Ground station-R1 wired link delay 2ms

TCP source-R1 wired link delay for the

asymmetric link case

6ms

TCP/STFRC destination-R2 wired link

delay

Variable

Bottleneck wired link delay 20ms

Queue limit at bottleneck link BW ∗ 25

RED queue threshold 3+BW ∗1.5

RED queue maximum threshold 10 + BW ∗ 5

Satellite wireless downlink 100Mbps

Satellite wireless uplink Variable

Satellite link error rate 10−4

Symmetry Ratio for the Droptail queue 0.75
Symmetry Ratio for the RED queue 0.65

Smoothing for TFRC yes

History discounting for TFRC yes

Simulation time 200sec

metric link case, presented in this paper, are for the uplink

with 0.384Mbps and RED queue at bottleneck links.

Values of the Symmetry Ratio used in simulations are 0.75
and 0.65 for Droptail and RED queues, respectively, and are

obtained from the ratio of the average forward delay to the

average RTT found in the simulation. Values of parameters of

STFRC are the default values suggested in [9]. Values of the

parameters used in the simulation are summarized in Table 1.

b) Results

To evaluate the fairness to TCP, we measure the throughput

of individual flows and the aggregate TCP flows, and varia-

tions in individual flows’ throughput. To show the response

to losses, we measure the instantaneous throughput of all the

flows. The results are presented in the following subsections.

I. Normalized throughput of TCP—The normalized through-

put of TCP is the aggregate throughput normalized by the

share of the bottleneck bandwidth, with a value of one indi-

cating the fair share. Aggregate throughput is measured as
the sum of the data received per second at all TCP destina-

tions. Since an equal number of flows of each of STFRC and

TCP share the same bottleneck for data packets, and are ex-

pected to get an equal share of the bottleneck bandwidth, the

normalization is achieved by dividing the aggregate through-
put by the half of the bandwidth of the bottleneck link. To

simulate a wide variety of network conditions, we vary the

number of flows and bottleneck link bandwidth. For the sym-
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Figure 4. Normalized throughput of TCP for the symmetric

link case (topology shown in Fig. 2).

metric link case (i.e. for the topology presented in Fig. 2),

Fig. 4 shows the normalized throughput for the last 60 sec-
onds of simulation for Droptail (4(a)) and RED (4(b)) queues.

Results illustrate the fairness of STFRC over symmetric links.

TCP throughput is a little lower than its fair share when the

number of flows and the bandwidth are small because TCP
is more bursty than STFRC and suffers more drops at small

available bandwidth. The TCP throughput is a little higher

than that of STFRC at small available bandwidth when the

number of flows is large. This happens because flows are

forced to operate with a very low window size/rate under such
conditions. And even considering TCP’s timeouts, we find

that while the TCP window size determining the rate cannot

go below 1 packet, the rate of an STFRC sender can go below

the rate equivalent to that window size.

Fig. 5 shows similar results over asymmetric links (i.e. for

the topology presented in Fig. 3) for the RED queue used the

bottleneck links. Results show the fair share of the bottle-

neck when the uplink is 3.84Mbps (Fig. 5(a)) and 0.384Mbps

(Fig. 5(b)). However, for an uplink of 0.0384Mbps, results
(Fig. 5(c)) show the dominance of TCP over STFRC when the

bottleneck bandwidth and the number of flows are large. In

Fig. 5(c), we present results up to 32Mbps of bottleneck band-
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(c) Uplink = 0.0384Mbps

Figure 5. Normalized throughput of TCP for the asymmetric

link case (topology shown in Fig. 3).

width because STFRC gets a reasonable share up to 16Mbps

of bottleneck bandwidth. For the case of 128 flows (64 of

TCP and 64 of STFRC) from Fig. 5, a comparative view of
the normalized throughput of TCP for various bandwidths of

the uplink is presented in Fig. 6 that shows STFRC’s failure to

have the fair share of the bandwidth. The reason for STFRC

not getting the enough share of the bandwidth is the increase

of the RTT due to the increase of the End-to-End (E2E) delay
on the path from the STFRC destinations to sources.

We measured the E2E delay from STFRC-destinations to
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Figure 6. Normalized throughput of TCP when the number

of flows is 64 each for the RED queue and the asymmetric

link case (topology shown in Fig. 3).

sources. The E2E delay is the difference between the time of

sending a STATUS-feedback packet from the destination and

the time of receiving the packet at the sender. The E2E delay

is shown in Fig. 7 for the three uplink bandwidths. For the up-

link bandwidth of 0.0384Mbps, the E2E delay (Fig. 7(c)) in-
creases due to the increase of the rate of feedback beyond the

capacity of the uplink when the number of flows increases.

The rate of sending feedback in Mbps for the three uplink

bandwidths are presented in Fig. 8. The rate of sending

feedback in Mbps is measured as the amount of STATUS-
feedback packets in Megabytes sent by the receiver per sec-

ond. As observed in Fig. 8(c) showing the feedback rate for

0.0384Mbps uplink, the feedback rate is around the uplink

bandwidth when the number of flows is large. Since the up-
link bandwidth of 0.0384Mbps is not sufficient to handle the

increased feedback rate, the queuing delay at the uplink in-

creases resulting in an increase in the E2E delay.

II. Normalized Throughput of individual flows—We measure
the normalized throughput of individual flows to show the

fairness at the flow level. The normalization is performed

by dividing a flow’s throughput with its expected share of the

bottleneck bandwidth. For 16Mbps bottleneck bandwidth and

RED queue, Figs. 9 and 10 show the normalized through-
put of each flow as well as the mean of those for symmet-

ric and asymmetric links, respectively. Results show that the

throughput does not vary wildly around the mean, indicating

the overall fairness between individual flows.

To numerically track the variance of the throughput, we mea-

sure the Coefficient of Variance (CoV) of the throughput of

individual flows as a function of the loss that influences the

CoV. For the symmetric link case, we perform 10 simulation

runs for each set of parameter values involving 32 TCP and
32 STFRC flows with varying bottleneck link bandwidths.

Fig. 11 shows that the CoV for STFRC is lower than that

of TCP until the loss rate reaches 13%. CoVs across the runs
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Figure 7. E2E delay from STFRC-sources to -destinations

for the asymmetric link case (topology shown in Fig. 3).

also do not vary much. These results illustrate the better inter-

flow fairness of STFRC, and conform to the results shown

in [10].

III. Sending rate and losses—Fig. 12 shows the sending rate

at 0.1 second intervals, and times of losses for one arbitrary

flow of STFRC and TCP each. Data is taken from the sym-

metric link case, where 32 TCP and 32 STFRC flows share
a bottleneck bandwidth of 16Mbps. Results show STFRC’s

less aggressive reduction of the sending rate in response to

losses. This is an advantage when bursty losses occur due to
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Figure 8. The rate of sending feedback of STFRC-

destinations for the asymmetric link case (topology shown in
Fig. 3).

reasons other than congestion.

5. DISCUSSION

Numerical results show that STFRC shares bandwidth fairly

with co-existing flows and TCP, over both symmetric and

asymmetric links. The key factor is the selection of a rea-
sonable value for the Symmetry Ratio. We obtain the value

from the ratio of the average forward delay and the average

RTT found from the simulation. We also measured the nor-
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Figure 9. Normalized throughput of individual flows over

symmetric links (topology shown in Fig. 2).
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Figure 10. Normalized throughput of individual flows over
asymmetric links (topology shown in Fig. 3).
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(topology shown in Fig. 2).

malized throughput of TCP for other values of the Symmetry

Ratio (e.g. 0.5, 0.6, 0.7) around the obtained value (0.65), and
the results were similar, but are not shown because they do

not reveal any new findings. When used in a known network

environment, this value can be obtained from the knowledge

of the network. Otherwise, there are low-overhead estimation

methods that can be used to periodically obtain the forward
delay. Unless the average forward delay varies wildly with a

high frequency, the Symmetry Ratio obtained in this way can

provide a reasonable performance.
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Figure 12. Sending rates and losses for the symmetric link

case. Losses are shown at the top of the figure with v-shaped

and + shaped symbols for STFRC and TCP, respectively.

Another important factor for STFRC for Saratoga is the in-
terval of sending STATUS-feedback packets. For receiver-

based TFRC, at least one feedback packet per RTT is recom-

mended. For Saratoga, as we found, more than one STATUS-

feedback packet per RTT may result in duplicate retrans-

missions [5] that are not reported if lost. This makes p to
be estimated smaller than its actual value, making STFRC

for Saratoga unfair to TCP. Therefore, we recommend one

STATUS-feedback packet per RTT for STFRC for Saratoga.

Sending only one STATUS-feedback packet per RTT bene-

fits asymmetric and constrained return-channels. Sending a
STATUS-feedback packet with an interval of more than an

RTT will cause the STFRC to perform poorly as far as re-

sponding to the change of the network condition is concerned.

6. CONCLUSION

We have designed and presented a true Sender-based TCP-

Friendly Rate Control (STFRC) for the Saratoga protocol.

This STFRC uses the information contained in STATUS-

feedback packets sent by the existing Saratoga receiver

for the rate-control, and requires modifications within the
Saratoga sender only. Modifications to the protocol are not

required, and the asymmetric environments that Saratoga was

designed for can still be supported. Performance evaluation

with ns-2 simulations indicates that STFRC shares the band-

width with TCP and co-existing flows fairly. Evaluation re-
veals the requirement for just enough bandwidth at the feed-

back path to allow a fair share to STFRC when the band-

width is shared with TCP. These TFRC additions can enable

Saratoga to be used safely across the public Internet.
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